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Announcements

• Please make sure you have AWS set up with AWS Educate 
credits (bug Erick)

• Python 3.7 currently has some compatibility issues with 
Keras and Tensorflow — please downgrade your Python to 
version 3.6 if you’re using 3.7!!!

conda install python=3.6 

conda install keras

• No the quiz hasn’t been graded yet



Disclaimer: unfortunately “k” 
means many things



Previous Lecture: Topic Modeling

• There are actually many topic models, not just LDA

• Dynamic topic models: tracks how topics change over time

• This sort of idea could be used to figure out how user 
tastes change over time in a recommendation system

• Correlated topic models, Pachinko allocation,  
biterm topic models, anchor word topic models, …

• Could try to see if there are existing patterns for how 
certain topics become really popular



What if we have labels?



Example: MNIST handwritten digits have known labels



If the labels are known…



And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate 
cluster means, covariances



Flashback: Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

Step 2: Compute probability of each point belonging to each of the 
k clusters

Step 3: Update cluster means and covariances carefully 
accounting for probabilities of each point belonging to each of the 
clusters

Repeat until convergence: 

Don’t need this top part if we know the labels!

We don’t need to repeat until convergence



And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate 
cluster means, covariances



What should the label of 
this new point be?

Whichever cluster has 
higher probability!



(a procedure that given a new data 
point tells us what “class” it belongs to)

What should the label of 
this new point be?

Decision boundary

We just created a classifier

Whichever cluster has 
higher probability!

This classifier we’ve created assumes a 
generative model



You’ve seen generative 
models before for prediction

Linear regression!



x

y Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)



x

y

For specific value of x, 
assume y drawn from 
Gaussian with mean 

mx+b, standard dev 𝜎

Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)



Predictive Data Analysis

Training data

(x1, y1), (x2, y2), …, (xn, yn)

Goal: Given new feature vector x, predict label y

A giant zoo of methods

• y is discrete (such as colors red and blue) 
➔ prediction method is called a classifier

• y is continuous (such as a real number) 
➔ prediction method is called a regressor



Generative Models

• Hypothesize a specific way in which data are generated

• After learning a generative model:

• We can generate new synthetic data from the model

• Usually generative models are probabilistic and we can 
evaluate probabilities for a new data point

• In contrast to generative models, there are discriminative 
methods that just care about learning a prediction rule



Example of a Discriminative 
Method: k-NN Classification



Example: k-NN Classification

What should the label of 
this new point be?



Example: k-NN Classification

What should the label of 
this new point be?

1-NN classifier prediction



Example: k-NN Classification

What should the label of 
this new point be?

2-NN classifier prediction
Break tie



Example: k-NN Classification

What should the label of 
this new point be?

3-NN classifier prediction

We just saw: k = 1, k = 2, k = 3

What happens if k = n?



How do we choose k?

What I’ll describe next can be used to select 
hyperparameter(s) for any prediction method

First: How do we assess how good a prediction method is?



Hyperparameters vs. Parameters

• We fit a model’s parameter to training data  
(terminology: we “learn” the parameters)

• We pick values of hyperparameters and they do not get fit 
to training data

• Example: Gaussian mixture model 
• Hyperparameter: number of clusters k 
• Parameters: cluster probabilities, means, covariances

• Example: k-NN classification 
• Hyperparameter: number of nearest neighbors k 
• Parameters: N/A
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Example: future 
emails to classify 

as spam/ham
Example: Each data point is an email 
and we know whether it is spam/ham
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Predict on data 
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Average error: (0+0+50+0+50)/5 = 20%

Compute 
prediction error

50%
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1. Shuffle data and put them into “folds” (5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Train on fold’s training data, test on fold’s validation data  
(b) Compute prediction error

3. Compute average prediction error across the folds



k-fold Cross Validation
Training 
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1. Shuffle data and put them into “folds” (k=5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Train on fold’s training data, test on fold’s validation data  
(b) Compute prediction error

3. Compute average prediction error across the folds

not the same k as in k-means or k-NN classification



k-fold Cross Validation
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1. Shuffle data and put them into “folds” (k=5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Train on fold’s training data, test on fold’s validation data  
(b) Compute some sort of prediction score

3. Compute average prediction score across the folds

not the same k as in k-means or k-NN classification

“cross validation score”



Choosing k in k-NN Classification

For each k = 1, 2, 3, …, the maximum k you are willing to try:

Compute 5-fold cross validation score using k-NN classifier 
as prediction method

Use whichever k has the best cross validation score

Note: k-NN classifier has a single hyperparameter k



Automatic Hyperparameter Selection

For each hyperparameter setting 𝜃 you are willing to try:

Compute 5-fold cross validation score using your algorithm 
with hyperparameters 𝜃

Use whichever 𝜃 has the best cross validation score

Suppose the prediction algorithm you’re using has 
hyperparameters 𝜃

Why 5?

People have found using 10 folds or 5 folds to work well in 
practice but it’s just empirical — there’s no deep reason
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Example: future 
emails to classify 

as spam/ham
Example: Each data point is an email 
and we know whether it is spam/ham

Important: the cross validation score is 
trying to predict what the prediction 

quality will be on the unseen test data

Our earlier example had a cross validation 
score of 20% error

This is a guess at how well the prediction 
method should perform on test data
This guess is not always accurate



Different Ways to Measure Accuracy
Simplest way:
• Raw error rate: fraction of predicted labels that are wrong  

(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham) 
when 1 label is considered “positive” and the other “negative”:
• Precision: among data points predicted to be “positive”, 

what fraction of these predictions is correct?
• Recall: among data points that are actually “positive”, what 

fraction of these points is predicted correctly as “positive”?  
(also called true positive rate)

• F1 score: 2 ⨉ precision ⨉ recall
precision + recall



Prediction and Model Validation

Demo



Decision Trees



Example Made-Up Data

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic



Example Decision Tree

Age > 40?

Weight > 200?Age > 30?

no yes

no yes no yes

diabeticnot 
diabetic

diabeticnot 
diabetic



Learning a Decision Tree

• Many ways: general approach actually looks a lot like 
divisive clustering but accounts for label information

• I’ll show one way (that nobody actually uses in practice) but 
it’s easy to explain



Learning a Decision Tree

Age (years)

Weight (lb)

4030 5020

100

200

300

1. Pick a random feature 
(either age or weight)

2. Find threshold for which red and blue are as “separate as 
possible” (on one side, mostly red; on other side, mostly blue)

210

Red: diabetic 
Blue: not diabetic



Learning a Decision Tree

Age (years)

Weight (lb)

4030 5020

100

200

300

Within each side, recurse until a 
termination criterion is reached!

Example termination criteria: ≥90% points within region has same label, 
number of points within region is <5

210
35

145 3929

Note: label within each region is majority vote

Red: diabetic 
Blue: not diabetic



Decision Tree Learned
Weight > 210?

Age > 35?Weight > 145?

no

diabeticnot 
diabetic

not 
diabetic

Age > 39?

Age > 29?

yes

no yes no yes

not 
diabetic

no yes

not diabetic
no yes

diabetic
For a new person with feature vector (age, weight), easy to predict!

Weight > 210?

Age > 35?Weight > 145?

Age > 39?

Age > 29?



Decision Forest for Classification

New test data point

Tree 1 Tree 2 Tree T…Tree 3

diabetic not 
diabetic

diabeticdiabetic

Final prediction: majority vote of the different trees’ predictions

Learn each tree 
separately using 

same training data

• Typically, a decision tree is learned with randomness 
(e.g., we randomly chose which feature to threshold)
➔ by re-running the same learning procedure, we can get 

different decision trees that make different predictions!
• For a more stable prediction, use many decision trees



Decision Forest for Classification
New test data point

Tree 1 Tree 2 Tree T…Tree 3

diabetic not 
diabetic

diabeticdiabetic

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

• Random Forest: in addition to randomly choosing features 
to threshold, also randomize training data used for each tree

• Extremely randomized trees: further randomize thresholds 
rather than trying to pick clever thresholds

Randomly sample 
(with replacement) 

n points
n training 

data 
points

Randomizing training data 
this way is called bagging 

(bootstrap aggregating)



Back to the demo



Neural Nets and Deep 
Learning



Over 10 million images, 1000 object classes

Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. ĲCV 2015.

2011: Traditional computer vision achieves accuracy ~74%
2012: Initial deep neural network approach accuracy ~84%

2015 onwards: Deep learning achieves accuracy 96%+



Deep Learning Takeover

• Top computer vision conferences (CVPR, ICCV, ECCV) are 
now nearly all about deep learning

• Top machine learning conferences (ICML, NeurIPS) have 
heavily been taken over by deep learning

Academia:

Extremely useful in practice:
• Near human level image classification 

(including handwritten digit recognition)
• Near human level speech recognition
• Improvements in machine translation, text-to-speech
• Self-driving cars
• Better than humans at playing Go

Heavily dominated by industry now!



Google DeepMind’s AlphaGo vs Lee Sedol, 2016



Is it all hype?



Source: Goodfellow, Shlens, and Szegedy. Explaining and Harnessing Adversarial Examples. 
ICLR 2015.

panda 
~58% confidence

adversarial 
noise

gibbon 
~99% confidence



Source: Papernot et al. Practical Black-Box Attacks against Machine Learning. Asia 
Conference on Computer and Communications Security 2017.



Source: labsix



Source: Gizmodo article “This Neural Network's Hilariously Bad Image Descriptions Are Still 
Advanced AI”. September 16, 2015. (They’re using the NeuralTalk image-to-caption software.)



Source: Quanta Magazine article “Machine Learning Confronts the Elephant in the Room”. 
September 20, 2018.

Slightly modifying an image results in different prediction results



Source: Quanta Magazine article “Machine Learning Confronts the Elephant in the Room”. 
September 20, 2018.

Slightly modifying an image results in different prediction results



Another AI Winter?
~1970’s: First AI winter over symbolic AI

~1980’s: Second AI winter over “expert systems”

Every time: Lots of hype, explosion in funding, then bubble bursts



https://medium.com/@mĳordan3/artificial-intelligence-the-revolution-hasnt-happened-
yet-5e1d5812e1e7



https://www.theatlantic.com/technology/archive/2018/05/machine-learning-is-stuck-on-asking-why/
560675/?single_page=true



What is deep learning?



Serre, 2014Slide by Phillip Isola



Brain/Machine “clown fish”

Basic Idea

Slide by Phillip Isola



Edges

Texture

Colors

Segments

Parts
“clown fish”

Feature extractors Classifier

Object Recognition

Slide by Phillip Isola



“clown fish”

Edges

Feature extractors

Texture

Colors

Segments

Parts

Classifier

Learned

Object Recognition

Slide by Phillip Isola



“clown fish”

Learned

Neural Network

Slide by Phillip Isola



“clown fish”

Learned

Neural Network

Slide by Phillip Isola



“clown fish”

Learned

Deep Neural Network

Slide by Phillip Isola



Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled 
sheets of paper corresponding to the 

different classes

deep learning: series (“layers”) of 
simple unfolding operations to try to 

disentangle the 2 sheets



Representation Learning

“clown fish”

Learned

Visualize 

(e.g., t-SNE)

Visualize

Visualize

Visualize

Visualize

Visualize

Visualize

Each layer’s output is another way we could represent the input data



Representation Learning

“clown fish”

Learned

Visualize 

(e.g., t-SNE)

Visualize

Each layer’s output is another way we could represent the input data

cla
ss

ifie
r



Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s
TPU’s

CPU’s 
& Moore’s law

• Better algorithms



Structure Present in Data Matters

Neural nets aren’t doing black magic

• Image analysis: convolutional neural networks (convnets) 
neatly incorporates basic image processing structure

• Time series analysis: recurrent neural networks (RNNs) 
incorporates ability to remember and forget things over time

• Note: text is a time series

• Note: video is a time series



Handwritten Digit 
Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

“dense” layer 
with 10 numbers

“dense” 
layer final 

output

weighted sums activation

(can be 
thought of 
as post-

processing)

(parameterized 
by a weight 

matrix W and 
a bias b)

single “dense” layer with 10 neurons



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

“dense” layer 
with 10 numbers

weighted sums

(parameterized 
by a weight 

matrix W and 
a bias b)

input dense

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array 
of dimensions 

784-by-10)
(1D numpy array 
with 10 entries)



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

“dense” layer 
with 10 numbers

weighted sums

(parameterized 
by a weight 

matrix W and 
a bias b)

input dense

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array 
of dimensions 

784-by-10)
(1D numpy array 
with 10 entries)

…

dense[0] = np.dot(input, W[:, 0]) + b[0]
dense[1] = np.dot(input, W[:, 1]) + b[1]

dense[j] =
783�

i=0

input[i] W[i, j]�

+ b[j]



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

“dense” layer 
with 10 numbers

weighted sums

(parameterized 
by a weight 

matrix W and 
a bias b)



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

“dense” layer 
with 10 numbers

“dense” 
layer final 

output

weighted sums activation

(can be 
thought of 
as post-

processing)

(parameterized 
by a weight 

matrix W and 
a bias b)

single “dense” layer with 10 neurons



Handwritten Digit Recognition

“dense” 
layer final 

output

activation

(can be 
thought of 
as post-

processing)

“dense” layer 
with 10 numbers

Many different activation functions possible

Example: Rectified linear unit (ReLU) 
zeros out entries that are negative

4

3.5

4

-1

0.5

2

-4

3

-2

5

dense
dense_final

dense_final = np.maximum(0, dense)

4

3.5

4

0

0.5

2

0

3

0

5

ReLU



Handwritten Digit Recognition

“dense” 
layer final 

output

activation

(can be 
thought of 
as post-

processing)

“dense” layer 
with 10 numbers

Many different activation functions possible

Example: softmax turns the entries in the 
dense layer (prior to activation) into a 
probability distribution (using the “softmax” 
transformation)

dense_exp = np.exp(dense) 
dense_exp /= np.sum(dense_exp) 
dense_final = dense_exp

dense
dense_final

4

3.5

4

-1

0.5

2

-4

3

-2

5

0.17

0.10

0.17

0.00

0.01

0.02

0.00

0.06

0.00

0.46

softmax



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

“dense” layer 
with 10 numbers

“dense” 
layer final 

output

weighted sums softmax

(can be 
thought of 
as post-

processing)

(parameterized 
by a weight 

matrix W and 
a bias b)

single “dense” layer with 10 neurons

Pr(digit 0)
Pr(digit 1)
Pr(digit 2)

Pr(digit 9)

Pr(digit 3)
Pr(digit 4)
Pr(digit 5)
Pr(digit 6)
Pr(digit 7)
Pr(digit 8)



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

We want the output of the 
dense layer to encode 

probabilities for whether the 
input image is a 0, 1, 2, …, 9  

but as of now we aren’t 
providing any sort of 

information to enforce this

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

Demo part 1



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

Learning this 
neural net 

means learning 
W and b

1
Pr(digit 6)log

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

Demo part 2



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

Learning this 
neural net 

means learning 
W and b

1
Pr(digit 6)log

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

Demo part 3


